
3D Semantic Mapping: A Registration Based Approach

Ryan Amaudruz, Dorian Bekaert, Milena Kapralova, Bogdan Palfi, Darie Petcu, Alexandru Turcu

Project Report - Master Artificial Intelligence

Informatics Institute
University of Amsterdam

Abstract

Vision-based scene understanding is a common task in
the fields of robotics and computer vision in which visual
systems attempt to understand their environment, both from
a semantic and geometric perspective. This task was the
base of the Robotic Vision Scene Understanding Challenge
[8], which assesses the ability of a robotic vision system
to comprehend semantic and geometric aspects of its sur-
roundings. As such, this report proposes a 3D semantic
mapping pipeline to solve the Object-based Semantic SLAM
(Simultaneous Localization and Mapping) task presented in
the challenge. The core of our method is the creation of a
3D point cloud map of a simulated environment with the use
of fast global registration. The semantic map is then created
using a pre-trained 3D object detection model that assigns
bounding boxes around objects in the original 3D map. The
results indicate that, while very accurate in terms of pre-
dicting the label of an object, our method is not robust re-
garding other aspects important to the resulting map, such
as the number of objects detected and their spatial quality.
Our pipeline is impaired by components related to the esti-
mation of coordinate transformations and limitations of the
fast global registration method.

1. Introduction

In the fields of computer vision and robotics, vision-
based scene understanding involves extracting geometric
and semantic information from the environment in order
to solve various localization and reasoning tasks. There-
fore, scene understanding goes beyond low-level image-
processing tasks and focuses on a deeper understanding of
the scene by detecting and identifying objects and relation-
ships in the environment. A more specific case of scene
understanding comes in the form of Semantic SLAM (Si-

multaneous Localization and Mapping), which is a common
task in the fields of robotics and autonomous vehicles that
involves mapping an agent’s environment while also keep-
ing track of the agent’s location. The semantic component
refers to the agent’s ability to understand its environment
beyond geometric features by detecting and identifying ob-
jects. The main advantage of this semantic approach is that
it allows the agent to understand and reason about its en-
vironment, which not only leads to a higher quality SLAM
but is also crucial when it comes to human-robot interac-
tions [4].

The report focuses on the 3D semantic mapping aspect of
Semantic SLAM in the context of the Robotic Vision Scene
Understanding Challenge [8]. This challenge analyzes the
performance of a robotic vision system in terms of mapping
and understanding its environment. Specifically, the chal-
lenge involves the usage of a simulated environment, called
Benchbot [20], which facilitates research in the field of se-
mantic scene understanding by providing a realistic simula-
tion of a robotic agent that can explore various indoor envi-
ronments. Benchbot makes use of the NVIDIA Omniverse
and Isaac Sim to provide physically accurate and photoreal-
istic virtual environments, which act as synthetic data.

Out of the raw data returned by the robot, we make use of
the RGB-D images and the intrinsic camera matrices. This
information is made available on an incremental basis, fol-
lowing each movement of the robot. Therefore, we have
designed an incremental pipeline for building a 3D repre-
sentation of the target environment using the fast global
registration algorithm [27]. The created 3D global map
is then passed to the pre-trained 3D object detection algo-
rithm, Votenet [15], to extract the information regarding the
bounding boxes and labels of the objects. The results are
slightly underwhelming, with the pipeline only achieving
2% of what is theoretically considered possible in the sim-
ulation.

1



2. Related Work
2.1. Traditional SLAM

Traditional SLAM methods employ two separate mod-
ules, one for estimating the pose in real-time and the other
for updating the map [2], often referred to as the ”front end”
and ”back end”, respectively. Within this field, two SLAM
approaches have been observed: direct SLAM, which does
not pre-process collected images but instead relies only on
pixel intensity; and indirect SLAM, which processes the
available data to identify certain key points, then detects and
matches them using the camera pose [1]. The trade-off be-
tween these two methods is that the direct method is faster,
due to using less information, but less precise.

RGB-D SLAM and Point Clouds

In recent years, RGB-D cameras have been adopted in
the SLAM domain. These sensors use cameras and depth
sensors, the end result being RGB images with annotated
depths. This approach has led to Visual SLAM (VS-
LAM), which only employs visual information to achieve
the SLAM task. A common strategy in VSLAM is to con-
vert the 2D visual information into 3D point clouds, which
can then be used to create 3D maps of the environment. The
pioneering work of [14] saw the first 3D reconstruction sys-
tem using the data acquired from the RGB-D camera on a
Kinect sensor.

Semantic SLAM

The previously discussed methods are concerned with
learning the geometric features of the environment with-
out incorporating semantic information. However, incor-
porating this semantic information allows the agent to not
only understand where objects are placed around the envi-
ronment, but also what the objects are, thus allowing for
potential reasoning tasks. [10] discusses how acquiring se-
mantic information about surrounding objects can provide
useful information for optimizing the VSLAM pipeline: a
higher-level understanding of the map can be inferred. A
better map understanding can, in turn, lead to a more ac-
curate SLAM application [3]. Semantic VSLAM relies on
Deep Learning techniques for the accurate labeling of the
detected objects. Representing state-of-the-art in various
Computer Vision tasks such as object recognition and se-
mantic understanding, Deep Learning is a crucial part of
Semantic VSLAM [24].

2.2. The Robotic Vision Scene Understanding
(RVSU) Challenge

The RVSU challenge was created by a group of re-
searchers associated with the Australian Centre for Robotic

Vision, with the goal of stimulating research in scene un-
derstanding for autonomous robotic agents. The semantic
SLAM part of the challenge provides five simulated envi-
ronments - House, Miniroom, Apartment, Company and
Office - and three task types:

• Passive, Ground Truth: the robot follows a pre-defined
path and ground-truth poses are available

• Active, Ground Truth: the user can input movement
commands directly and ground-truth poses are avail-
able

• Active, Dead Reckoning: the user can input move-
ment commands directly, but ground-truth poses are
not available

The challenge also provides an evaluation metric for 3D
cuboid object maps, named Object Map Quality (OMQ),
and is discussed later.

Bosch Corporate Research Semantic SLAM Team

Bosch Corporate Research Semantic SLAM Team [21] is
one of the teams that competed in the 2022 RSVU Chal-
lenge. Their method uses a semantic segmentation front-
end combined with a custom foreground-background seg-
mentation to create a point cloud per frame. They use two
segmentation networks, Detectron21 and UPerNet Swin-B2,
which are applied to the RGB-D images collected from the
robot. The output of both networks is fused to make the
method more robust. Next, the point clouds are voxelized
and the center of each voxel is determined by voting, result-
ing in a global point cloud. Bounding boxes are then ex-
tracted from this global point cloud by either top-down pro-
jection or clustering. Finally, size and confidence-based fil-
tering are used to obtain the final detections. The described
approach works for the passive control task, while this study
focuses on active control. As such, their results couldn’t be
fairly compared to ours and were not included.

MSCLab

Another team that submitted to the 2022 RSVU challenge
is the MSCLab team [12]. This team makes use of the 3D
detector FCAF3D [17], which receives an RGB-D point
cloud as input at each time step. However the network is
not able to detect all object classes in the challenge. There-
fore, they perform an additional instance segmentation step
on the image using QueryInst [6]. If the object isn’t de-
tected by FCAF3D, QueryInst segments the instance of that
object and fits a tight box from a set of predefined anchor
boxes to it, simulating a bounding box. The result of this

1https://github.com/facebookresearch/detectron2
2https://github.com/open-mmlab/mmsegmentation

2

https://github.com/facebookresearch/detectron2
https://github.com/open-mmlab/mmsegmentation


whole process is a list of detected objects, many of which
have overlap between them. In order to account for this,
the duplicates are merged if they pass a certain overlapping
threshold, otherwise they are registered as new objects

2.3. VoteNet

VoteNet [15] is a 3D end-to-end object detection neural
network that is built on the PointNet++ [16] backbone. As
3D data can be quite sparse, it creates proposals for the cen-
ter of each object from the input point cloud. These propos-
als are then clustered and aggregated with the use of Hough
Voting [9]. The output is comprised of bounding boxes with
labels for the detected objects. The advantage of VoteNet
over other 3D detection methods is that it handles 3D infor-
mation directly, instead of converting the input point cloud
to 2D before performing detection.

3. Methodology

The pipeline is comprised of multiple modules that work
together to produce a semantically labeled 3D map. These
modules were independently developed and used together
to obtain the final results. In the following sections, we
describe our approach towards implementing the compo-
nents of the pipeline, as well as the difficulties we faced
and the solutions we found to the encountered challenges.
As a short summary, the pipeline first uses the depth im-
age and the robot’s intrinsic camera parameters to create a
grayscale point cloud, where each pixel in the depth im-
age is mapped to a 3D point in the point cloud. The 3D
map is then created by combining the point clouds from all
captured images. This process is done iteratively using fast
global registration [27]. Votenet is then used for 3D ob-
ject detection on the 3D map to identify objects and place
bounding boxes around them. The code and installation in-
structions are publicly available 3.

3.1. BenchBot

Developing a solution to the challenge task is facilitated
by the use of the BenchBot [20] software stack. The most
important part of this software enterprise is the API, which
allows the communication with the robot operating system
(ROS) backend via high-level Python programming. Cre-
ating a solution in this context is a matter of overwriting
an Agent class that restricts the input to the robot to two
actions: forward and angular movement, while also offer-
ing RGB-D, LIDAR and pose information after each action.
The result creation and evaluation methods are also imple-
mented in the BenchBot stack.

3https://github.com/a-turcu/vslam-attempts

Robot movement

In our experiments, the robot is under active control in all
environments. Specifically, the robot is first instructed to
make a full rotation of 360◦, which allows for a full map-
ping of the smaller environment without generating signif-
icant artifacts. Afterward, the robot is moved around the
environment in order to fully capture objects which might
have been not been fully observed in the initial full rota-
tion. Due to the limitations of the registration method, the
robot only turns 10◦ at a time, either left or right, and moves
forward 0.5 meters at a time.

3.2. Point Cloud Creation

The point cloud for each individual image is created di-
rectly from the depth map, using the intrinsic camera pa-
rameters. The z coordinate in the point cloud is given di-
rectly by the depth image while the x and y coordinates are
calculated using the depth and the intrinsic camera param-
eters. Specifically, point coordinates in the point cloud are
given by the formulas:

x =
(u− px) ∗ z

fx
(1)

y =
(v − py) ∗ z

fy
(2)

z = depthu,v (3)

where (u, v) are the image coordinates, z is the depth
image value at point (u, v), fx and fy are the focal lengths
while px and py are the coordinates of the principal point.
The focal lengths and the principal point coordinates are
taken from the camera intrinsic matrix, provided by the
simulation. Using this method results in a grayscale point
cloud. Colors are added subsequently by concatenating
RGB information on top of the corresponding points in or-
der to complete the point cloud.

3.3. 3D Mapping

3.3.1 Fast Global Registration

Stitching two point clouds at a time is done using the
Fast Global Registration algorithm [27] implemented in the
Open3D library [28]. The main idea behind this algorithm
is to find a rigid body transformation between a source and
a target point cloud. To this end, the first step involves
extracting features from each point cloud using Fast Point
Feature Histogram (FPFH) [18] feature descriptors. FPFH
is a less computationally intensive implementation of Point
Feature Histogram (PFH) [19], which encodes the geomet-
rical properties of a point’s neighborhood using the mean
curvature around the point. Once the features are extracted,
the algorithm matches the corresponding features based on

3



their descriptors and finds a rigid transformation that aligns
the two point clouds. The main benefit of this algorithm
over alternatives such as the Iterative Closest Point [26] reg-
istration algorithm is not only the speed, which is an order
of magnitude faster than prior methods, but also the fact that
it does not require an alignment for initialization [27].

3.3.2 Iterative registration

Our pipeline uses the Fast Global Registration algorithm it-
eratively to create the global point cloud in real-time. Mak-
ing use of the point cloud of each RGB-D image, the 3D
global map is created by iteratively applying Fast Global
Registration to consecutive point clouds. Specifically, the
algorithm starts by creating the point cloud of the initial
RGB-D image seen by the robot. After each subsequent
robot movement, a new point cloud is created from the new
RGB-D image. Both the original and new point clouds
are downsampled using a voxel size of 8 ∗ 10−5. We
found larger voxel sizes to result in overly sparse point
clouds, while smaller voxel sizes required more computa-
tional time, without any visible improvements in the 3D
map quality. No ablation experiments were conducted to
test this value, but we generally found that values above
10−4 tend to produce degenerate 3D maps due to the in-
creased sparseness while values below 5∗10−5 require sub-
stantially more time with no apparent benefit. Fast Global
Registration is then applied to the two downsampled point
clouds, with the initial point cloud being the source and the
new point cloud being the target. The resulting rigid-body
transformation is then applied to the original point cloud be-
fore merging the two, not downsampled point clouds into a
new combined point cloud. This process is applied itera-
tively, with the combined point cloud acting as the source
while the new point cloud acting as the target. The pseudo-
code can be seen in Algorithm 1:

Algorithm 1 Iterative Fast Global Registration

1: pcd← depth to pcd(RGB-D)
2: while robot is running do
3: Get new RGB-D image
4: new pcd← depth to pcd(new RGB-D)
5: Downsample both point clouds
6: Calculate FPFH geometric features
7: transformation← fgr(pcd, new pcd, fpfh)
8: Apply transformation to non-downsampled pcd
9: pcd← merge(pcd, new pcd)

10: end while

3.4. Object Detection

The approach we have taken was to perform object de-
tection on a global point cloud that is created by the iterative

fast global registration method 3.3.2. As such, the need to
remove duplicates is mitigated, as each object would only
be detected once. This, however, forces the Votenet model
to receive a global point cloud as input, which in our case
has a considerable size that might affect the computational
time. To account for this, the global point cloud was con-
verted to grayscale and downsampled to 500000 points. The
size was chosen empirically, as the point cloud needs to be
large enough to accurately represent the room while also
not to overwhelm the detection network. No ablation study
was conducted since the 500000 value seemed to have an
adequate performance.

3.5. Object Map Quality (OMQ) Evaluation

The OMQ, described in the RVSU challenge, uses the
probability-based detection quality measure [7] to evaluate
the quality of the generated labeled bounding boxes. These
bounding boxes are comprised of their dimensions, location
relative to the room and a list of probabilistic labels. From
now on, we will refer to the bounding boxes as objects. The
OMQ is composed of 4 other sub-metrics: pairwise object
quality (pOQ), spatial quality (QSp

), label quality (QL) and
false positives quality.

Spatial quality is calculated as the 3D Intersection of
Union [25] score between the ground truth and the proposed
object cuboids.

Label quality is computed by taking the probability as-
signed to the correct class. For example, if the proposed
object has the following confidence scores: ”chair”:0.8,
”table”:0.15 and ”toilet”:0.05, while the ground truth object
has the label ”chair”, then the label quality for the proposed
object is 0.8.

Pairwise object quality is expressed as the geometric
mean between the spatial and label quality of the proposed
object (Oi) and the ground truth object (Oj). The ground-
truth object with the highest non-zero pairwise quality is
assigned to each object in the generated map. This assign-
ment helps identify the ”true positives,” which are objects
with a non-zero quality value and ”false positives,” which
are objects in the generated map that don’t have a matching
pairwise quality value.

The false positive cost, a property of false positive
objects, is the maximum confidence given to a non-
background class. The false positives quality is a statistic
that is equal to 1− false positives cost.

Finally, OMQ is computed as follows:

OMQ(M,M̂) =

∑NTP

i=1 q(i)

NTP +NFN +
∑NFP

j=1 cFP (j)
(4)

In the equation above, NTP is the number of true posi-
tives (analogous for NFP and NFN ), q(i) is the pOQ of the
ith object and cFP is the false positive cost.

4



Figure 1. 3D reconstruction of the Miniroom environment.

3.6. Hardware

For development, we had access to 3 computers from
the Intelligent Robotics Lab from the University of Amster-
dam. Two of the machines were equipped with an Intel Core
i7 9700 (8 cores/16 threads), 64 GB DDR4 and an NVidia
RTX 2080 Ti (11 GB) with CUDA 10 and driver 415. The
third machine was more powerful, being equipped with an
Intel Core i9 10900KF (10 cores/20 threads), 64 GB DDR4
and an NVidia RTX 3090 (24 GB).

4. Results
The qualitative results consist of the point clouds gen-

erated with the fast global registration method. The point
cloud of the Miniroom environment can be observed in Fig-
ure 1. The empty space on the floor is due to the fact that
the camera is placed on top of the robot, such that the floor
directly below is not visible to the robot. The artifacts that
are visible are a result of errors in the computation of the
rotations and translations between the captured images. It
is worth mentioning that this specific point cloud has a reso-
lution of approximately 51 million points. No voxel down-
sampling was used when visualizing this point cloud.

The point cloud that is used in the detection network
and the resulting bounding boxes are displayed in Figure
2. The detection network does not need all of the detail
shown in the point cloud from Figure 1, so it is downsam-
pled to 500000 points and the color is removed. The dis-
played detections have a confidence score of over 90% and
their labels are the following: bed, chair, table, bookshelf
and nightstand. As a comparison, the ground truth bound-
ing boxes applied over the same point cloud can be seen in
Figure 3.

As for the quantitative results, the evaluation of the OMQ
method and its sub-parts on the Miniroom environment can
be seen in Table 1, alongside the results of the other teams
(on all environments). The components of the OMQ are

Figure 2. 3D segmentation of the Miniroom environment.

Figure 3. Ground truth bounding boxes on the Miniroom environ-
ment.

informative to our task and can be considered metrics on
their own, so we have chosen to include them separately as
well. A detailed analysis of the quantitative results can be
found in Section 5.

5. Discussion
The obtained OMQ is 0.02, which means that we have

achieved 2% of what is considered possible for this certain
environment. The other sub-metrics hold more detailed in-
formation about our detection method:

• An average label quality of 0.99 means that the sys-
tem correctly identifies the label of the proposed ob-
ject 99% of the times, so it can be stated that the detec-
tion network accurately identifies the point cloud struc-

5



Ours SP MSCLab autoni
OMQ 0.02 0.424 0.298 0.242

Avg. label quality 0.99 0.895 0.997 0.999
Avg spatial quality 0.163 0.575 0.368 0.392

Avg. FP quality 0.262 0.146 0.020 0.001
Avg pairwise 0.402 0.753 0.575 0.591

Table 1. OMQ breakdown score of our approach compared to the
teams from this year. Our approach runs in the Miniroom environ-
ment, but for the other teams, the score is a mean over all environ-
ments. All scores are collected in the (Active, GT) task.

tures.

• The average spatial quality of 16.3% indicates that the
coordinates and the size of the predicted objects do not
overlap with the ground truth objects most of the time.

• A low false positive score shows that the objects qual-
ifying as false positives were assigned a high confi-
dence, this being a negative indicator of our system.
This is most likely caused by the fact that we assign
the predicted objects only one class probability, which
is usually very large (≥ 90%). If the spatial or label
quality of the object is sub-zero, this will cause the pro-
posed object to be categorized as a false positive with
a very high confidence, which destabilizes this metric.
We believe that the poor result of this metric is caused
by the combination of high confidence label and sub-
optimal spatial quality of the objects.

5.1. Challenges and difficulties

Creating the 3D Map

The first real challenge that we encountered was merging
the individual point clouds in order to create the global 3D
map. Multiple avenues were initially explored, both from a
point cloud registration perspective as well as from a SLAM
perspective. However, given the fact that the simulation al-
ready provides the ground truth values for the robot and
camera poses, we chose to attempt the easier task of just
building the map without taking localization into account.
As such, two registration methods were implemented, mul-
tiway registration and fast global registration, the latter be-
ing the preferred choice.

While fast global registration was applied iteratively as
explained in section 3.3.2, multiway registration is able to
take multiple point clouds and merge them in a single pass,
without the need for an iterative implementation. However,
this implied collecting all observations from the simulation
run before creating the map. Qualitatively, we could not
observe any differences between the two created 3D maps.
We instead opted for the iterative fast global registration ap-
proach, not only because it had a shorter computational time

but also because it allowed for creating the map in real-time
rather than at the end of the run.

The choice of creating the map via registration had con-
sequences during the evaluation phase. Specifically, the co-
ordinates of the created map were shifted compared to the
global ground truth coordinates. This had no effect on de-
tecting the objects themselves but rather on comparing our
resulting bounding box coordinates with their ground truth
counterpart. Our attempts to solve this issue are explained
in the next section.

Camera to World coordinate matching

The bounding boxes output by the Votenet detection net-
work have their coordinates centered around the camera
that the global point cloud is seen from. The point cloud
(camera) and the environment (world) coordinates are offset
from each other, so it is not possible to directly use the co-
ordinates from the point cloud system as the results. One of
the hardest challenges we have faced involved transforming
the coordinates of the bounding boxes such that they match
the world coordinates.

It is important to note that the poses the robot goes
through are available. By using those, it is possible to build
a transformation matrix that should modify the points as to
match the world environment. Thus, our first attempt was to
convert the global point cloud to world coordinates before
passing it to the detection network. However, this method
did not work with the rest of our approach, as the detection
network would not return any results on the transformed
point cloud.

Secondly, we tried to transform the coordinates of the
first point cloud used in the global registration to world co-
ordinates. We had expected that, by concatenating the pos-
terior point clouds, the final model would inherit the coordi-
nates of the first frame. However, having the first frame and
the subsequently combined point clouds as a target for the
registration algorithm resulted in degenerate maps. There-
fore, we had to continue using the new observed point cloud
as the target.

Lastly, we have decided to convert every single point
cloud that was used in the registration process to the world
coordinates before stitching them together. This resulted in
a global point cloud that, again, did not return any results
when used as input for the detection network.

We have failed to come up with a feasible solution given
the time constraint of the course, so we have decided on a
hard-coded version of our first idea. Having observed that
the path of our robot starts with a 360◦ turn to the left, we
decided that we would empirically compose a transforma-
tion matrix that would revert this turn. This improvised
method has enabled us to obtain some results, albeit not
as accurate as we would have expected. The fact that a

6



global transformation was possible has led us to believe that
a transformation matrix like the one we found empirically
could be determined by pose calculations, however this re-
mains a topic for further study.

Testing on larger environments

When trying to test our pipeline on larger environments, we
realized that the robot controller could not connect to the
simulation. This was the case for the house, apartment,
and company environments while the office environment
was working only when running on the more powerful ma-
chine using the RTX 3090 GPU. On machines using the
RTX 2080 Ti GPU, we were only able to test the Miniroom
environments. To be more specific, while the simulation
would indeed start, the robot controller would fail to con-
nect. We assume this might be the case because of longer
waiting times required to load and run the simulation.

5.2. Limitations

Limited detected classes

The main limitation of the pipeline is the fact that the 3D ob-
ject detection algorithm is unable to recognize most objects
in the environment since it was trained on a different set of
objects. As such, the algorithm can only detect 5 classes
out of the 25 present in the ground truth list (chair, table,
couch, bed and toilet). Additionally, the detection is only
as good as the created point cloud map, which also depends
on how much the robot was allowed to explore the environ-
ment and which path was taken. Therefore, some objects in
the scene might not be recognizable due to their incomplete
point clouds.

Stitching Point Clouds

A second limitation comes in the form of the registration
algorithm, which is highly susceptible to mapping errors
in case of large discrepancies between incremental cam-
era poses. For this reason, the robot only moved forward
a maximum of 0.5 meters and only turned 10◦ at a time. In
addition, the algorithm is also highly dependent on the path
the robot takes throughout the environment. For instance,
scenes that are too similar but positioned differently might
be combined thus resulting in a degenerate mapping. There-
fore, the path had to be carefully selected, often through trial
and error. However, even this carefully selected path was
not enough to fully and correctly map larger maps such as
the office, which has many similar objects and textures. The
resulting partial point cloud can be seen in the Appendix,
Figure 4 while a degenerate 3D map of the office can be
seen in Figure ??.

5.3. Future work

Given the limitations of our pipeline, two main avenues
for improvements could be taken. Firstly, to improve the 3D
maps, fast global registration could be replaced with deep
global registration [5], which has shown state-of-the-art per-
formance when it comes to point cloud registration. Al-
ternatively, the registration method could be replaced alto-
gether with a proper SLAM method such as ORB-SLAM2
[13]. Secondly, to ensure more objects are detected in
the environments, the 3D object detection method could
be replaced with a 2D object detection method, which was
trained to recognize more classes. However, this would re-
quire transforming and keeping track of 2D bounding boxes
in 3D coordinates. This would be the approach most similar
to what other participants to the RVSU challenge had done,
which has the potential advantage of the robot being aware
of what it is looking at, which was shown to improve SLAM
performance [11, 22, 23].

6. Conclusion
We propose an implementation and analysis of a 3D se-

mantic mapping pipeline centered around fast global regis-
tration and 3D object detection in the context of the Robotic
Vision Scene Understanding challenge. We show that our
implementation is able to achieve an OMQ score of 0.02,
while confined to a small environment and reliant on a pre-
defined movement path. This low OMQ score is caused by
issues regarding creating the 3D map, aligning the camera
coordinates to the world coordinates, and the limited num-
ber of overlapping classes between the object detector and
the environment. We discuss some potential solutions to
these issues in the report, as we believe that with those im-
provements, our pipeline could represent a competent solu-
tion to the RVSU challenge.

Appendix
Fast global registration results in the office environment

Figure 4. Incomplete 3D map of the office environment.

7



References
[1] Rana Azzam, Tarek Taha, Shoudong Huang, and Yahya

Zweiri. Feature-based visual simultaneous localization and
mapping: A survey. SN Applied Sciences, 2:1–24, 2020. 2

[2] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, José Neira, Ian Reid, and John J
Leonard. Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 32(6):1309–1332, 2016. 2

[3] Kaiqi Chen, Jianhua Zhang, Jialing Liu, Qiyi Tong, Ruyu
Liu, and Shengyong Chen. Semantic visual simultaneous
localization and mapping: A survey, 2022. 2

[4] Weifeng Chen, Guangtao Shang, Aihong Ji, Chengjun Zhou,
Xiyang Wang, Chonghui Xu, Zhenxiong Li, and Kai Hu. An
overview on visual slam: From tradition to semantic. Remote
Sensing, 14(13):3010, 2022. 1

[5] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep
global registration, 2020. 7

[6] Yuxin Fang, Shusheng Yang, Xinggang Wang, Yu Li, Chen
Fang, Ying Shan, Bin Feng, and Wenyu Liu. Instances as
queries. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6910–6919, 2021. 2

[7] David Hall, Feras Dayoub, John Skinner, Haoyang Zhang,
Dimity Miller, Peter Corke, Gustavo Carneiro, Anelia An-
gelova, and Niko Sünderhauf. Probabilistic object detection:
Definition and evaluation, 2020. 4

[8] David Hall, Ben Talbot, Suman Raj Bista, Haoyang Zhang,
Rohan Smith, Feras Dayoub, and Niko Sünderhauf. The
robotic vision scene understanding challenge, 2020. 1

[9] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust
object detection with interleaved categorization and segmen-
tation. International journal of computer vision, 77:259–
289, 2008. 3

[10] Ping Li, Guoqing Zhang, Jianluo Zhou, Ruolong Yao, and
Xuexi Zhang. Study on slam algorithm based on object de-
tection in dynamic scene. In 2019 international conference
on advanced mechatronic systems (ICAMECHS), pages 363–
367. IEEE, 2019. 2

[11] Ziwei Liao, Yutong Hu, Jiadong Zhang, Xianyu Qi, Xiaoyu
Zhang, and Wei Wang. So-slam: Semantic object slam with
scale proportional and symmetrical texture constraints. IEEE
Robotics and Automation Letters, PP:1–1, 2021. 7

[12] MSCLab. Robotic vision scene understanding challenge:
Msclab report. 2022. 2

[13] Raul Mur-Artal and Juan D. Tardos. ORB-SLAM2: An
open-source SLAM system for monocular, stereo, and RGB-
d cameras. IEEE Transactions on Robotics, 33(5):1255–
1262, oct 2017. 7

[14] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and track-
ing. In 2011 10th IEEE international symposium on mixed
and augmented reality, pages 127–136. Ieee, 2011. 2

[15] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J.
Guibas. Deep hough voting for 3d object detection in point
clouds, 2019. 1, 3

[16] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 3

[17] Danila Rukhovich, Anna Vorontsova, and Anton Konushin.
Fcaf3d: fully convolutional anchor-free 3d object detection.
In Computer Vision–ECCV 2022: 17th European Confer-
ence, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part X, pages 477–493. Springer, 2022. 2

[18] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (fpfh) for 3d registration. In 2009
IEEE International Conference on Robotics and Automation,
pages 3212–3217, 2009. 3

[19] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow,
and Michael Beetz. Learning informative point classes for
the acquisition of object model maps. In 2008 10th Inter-
national Conference on Control, Automation, Robotics and
Vision, pages 643–650. IEEE, 2008. 3

[20] Ben Talbot, David Hall, Haoyang Zhang, Suman Raj Bista,
Rohan Smith, Feras Dayoub, and Niko Sünderhauf. Bench-
bot: Evaluating robotics research in photorealistic 3d simu-
lation and on real robots, 2020. 1, 3

[21] Bosch Corporate Research Semantic SLAM Team. Panoptic
hierarchical semantic slam. 2022. 2

[22] Han Wang, Jing Ying Ko, and Lihua Xie. Multi-modal se-
mantic slam for complex dynamic environments. ArXiv,
abs/2205.04300, 2022. 7

[23] Wenxin Wu, Liang Guo, Hongli Gao, Zhichao You, Yuekai
Liu, and Zhiqiang Chen. Yolo-slam: A semantic slam system
towards dynamic environment with geometric constraint.
Neural Computing and Applications, 34:6011 – 6026, 2022.
7

[24] Dan Xu, Andrea Vedaldi, and João F Henriques. Moving
slam: Fully unsupervised deep learning in non-rigid scenes.
In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4611–4617. IEEE, 2021.
2

[25] Jun Xu, Yanxin Ma, Songhua He, and Jiahua Zhu. 3d-giou:
3d generalized intersection over union for object detection in
point cloud. Sensors, 19(19), 2019. 4

[26] Zhengyou Zhang. Iterative point matching for registration
of free-form curves and surfaces. International journal of
computer vision, 13(2):119–152, 1994. 4

[27] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global
registration. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11-
14, 2016, Proceedings, Part II 14, pages 766–782. Springer,
2016. 1, 3, 4

[28] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:
A modern library for 3d data processing. preprint
arXiv:1801.09847, 2018. 3

8


	. Introduction
	. Related Work
	. Traditional SLAM
	. The Robotic Vision Scene Understanding (RVSU) Challenge
	. VoteNet

	. Methodology
	. BenchBot
	. Point Cloud Creation
	. 3D Mapping
	Fast Global Registration
	Iterative registration

	. Object Detection
	. Object Map Quality (OMQ) Evaluation
	. Hardware

	. Results
	. Discussion
	. Challenges and difficulties
	. Limitations
	. Future work

	. Conclusion

